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We present experimental data on the limiting behavior of an interreality system comprising a virtual hori-
zontally driven pendulum coupled to its real-world counterpart, where the interaction time scale is much
shorter than the time scale of the dynamical system. We present experimental evidence that, if the physical
parameters of the simplified virtual system match those of the real system within a certain tolerance, there is a
transition from an uncorrelated dual reality state to a mixed reality state of the system in which the motion of
the two pendula is highly correlated. The region in parameter space for stable solutions has an Arnold tongue
structure for both the experimental data and a numerical simulation. As virtual systems better approximate real
ones, even weak coupling in other interreality systems may produce sudden changes to mixed reality states.
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Although increasingly sophisticated real-time computer
simulations of the real world are created every day, to date
there has been little to no research done on the physics of the
pairing of a virtual system and its real-world counterpart,
often referred to as an “interreality” system �1�. Virtual sys-
tems are often created to model real systems as accurately as
possible, with great pains taken to eke out additional realism.
Aside from virtual worlds designed for entertainment, ex-
amples of accurate virtual models of the real world abound
in high-energy physics accelerator work �2�. Furthermore, a
computer simulation can feature unidirectional coupling to
the real world, as in the case of black box trading in finance
�3� or the dynamic clamp in neuroscience �4�. The unidirec-
tional coupling can also be from the real world to the simu-
lation, as in the case of data-driven modeling whereby live
measurement data is incorporated into an executing applica-
tion. This has been used for creating accurate, real-time mod-
els of systems ranging from complex vortex flows �5� to
human cancer cells �6�. The next step is to examine an inter-
reality system in which there is bidirectional coupling.

In this Brief Report we present experimental evidence for
a transition from a dual reality state to a mixed reality state
in an interreality system featuring bidirectional, instanta-
neous coupling. The experimental phase diagram is in the
form of an Arnold tongue �7�. There is good agreement be-
tween the experimental data and simulation. We demonstrate
that even a simple model taking into account a single degree
of freedom and using only linear damping is sufficient to
give rise to this mixed reality state. It is often difficult and
prohibitively expensive to create a model that predicts all
observable parameters of a system in the real world to maxi-
mum precision. Even a computer model of the familiar
physical pendulum in air must take into account linear and
quadratic damping, the buoyancy of the pendulum in the air,
the added mass due to the pendulum dragging air with it as it
moves, and a half dozen other effects in order to reproduce
the measured period to a precision of 10−5 seconds �8�. All

but the most sophisticated computer simulations will use ap-
proximations when it comes to modeling a physical system.

As an example of a virtual system coupled to a real one,
we choose a horizontally driven physical pendulum as the
real system. The horizontally and vertically driven physical
pendulum has been described in the literature �9�. The known
equations of motion accurately model the dynamics of the
system; to create a physically accurate virtual pendulum we
need only to make a real-time simulation based on these
equations. The experimental physical pendulum is a light-
weight, very thin wooden rod with a length l=15.37 cm, a
diameter of 2.3 mm, and a mass of 0.4 g. The pendulum is
connected directly to the roller of a digital angular encoder.
The data from the angular encoder is sent to a computer; this
provides a simple and robust measure of the instantaneous
angular position of the pendulum. Forcing for the physical
pendulum is provided by an amplifier and a PASCO actuator
�model SF-9324� with a maximum displacement of 0.3 cm.
The pendulum is attached to a lever arm that allows it to be
driven with a greater amplitude xdrive, up to a maximum of
5.75 cm. The computer controls the voltage to the actuator
via a data acquisition module capable of analog voltage out-
put. Figures 1�a� and 1�b� show the experimental setup.

We calculate the equation of motion for a horizontally
driven physical pendulum in the usual way. See Phelps and
Hunter for a detailed derivation �9�. We define � as the angle
through which the real pendulum oscillates as measured
from the vertical, and we define � to be the corresponding
angle for the virtual pendulum. Then the equation of motion
for the horizontally driven virtual pendulum with an arbitrary
time-dependent driving function f is

�̈ + 2��̇ + ��̄�0�2 sin � + av f̈v cos � = 0, �1�

where � is the damping coefficient, �0�2��r is the natural
angular frequency of the real pendulum, and �̄��v /�r is
the dimensionless ratio of the natural frequencies of the two
pendula. In terms of the pendulum moment of inertia I and
mass m, we define a� I−1mlxdrive�xdrive / l to be the dimen-
sionless coupling constant that sets the scale of the coupling
term. Weak coupling corresponds to a�1. To determine the
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coefficient of linear damping, we fit the decay of the un-
coupled real pendulum to a simple exponential. For our real
pendulum this measured value of � is 0.45±0.2, while the
measured natural frequency of the real pendulum �r is
1.57±0.01 s−1. These are the values used for � and �r in
each calculation. In this work, an overbar on a variable de-
notes a normalized, dimensionless quantity. Also, the sub-
scripts v and r refer to variables associated with the virtual
pendulum and the real pendulum, respectively. A standard
fifth-order Runge-Kutta routine is used to integrate this equa-
tion. We let f scale with the angular displacement of the real
pendulum: fv�����. At the nth time step of duration �t, the
measured positions of the real pendulum at the current and

two previous time steps determine the value of f̈:

f̈v,n = ��n − 2�n−1 + �n−2

�t2 � . �2�

Using these values, the integrator returns �n, which is used
to determine the driving amplitude fr,n��n for the real pen-
dulum. A voltage proportional to fr,n is sent to the actuator
driving the real pendulum. The distance from the pivot point
along the lever arm determines ar �see Fig. 1�b��. Since the
measurement, integration, and feedback are easily completed
by the computer in a time 	tcomputer with 	tcomputer
�t
�1/�0, the program then waits to integrate again until the
internal timer reaches n�t after the initial starting time for
the first integration. Since it is impractical to attempt to re-
lease the real pendulum from precisely the same starting po-
sition each time the program is run, instead the virtual pen-
dulum is started with zero initial velocity but with a nonzero
initial position. The real pendulum is started at rest, with
�n=0=0. Two typical sets of position versus time data are
plotted in Fig. 2.

With �t=35 ms, the bidirectional feedback is effectively
instantaneous; the effect is that of a real-time virtual pendu-
lum simulation that immediately responds to any motion of
the real pendulum and vice versa. This works because �t is
much shorter than the characteristic time scales of the dy-
namical system. The natural frequency of the real pendulum
is approximately 1.57 s−1. With no feedback, the motion of
either pendulum ceases after less than 10 s due to friction in
the real pendulum and damping in the equation of motion of
the virtual pendulum. We allow the system to run for 45 s,
long enough for any transient dynamics to vanish, and then
we evaluate the final dynamics of the system. We find that
there are two equilibrium states of the system when av and ar
are restricted to a range appropriate to weak coupling
�av ,ar
0.4�. We label these the “dual reality” state and the
“mixed reality” state. In the dual reality state, the oscillations
of the two pendula are uncorrelated and decrease in ampli-
tude until both come to rest at the stable position �=�=0.
The two pendula behave as separate oscillators in the dual
reality state, with reality and virtual reality interacting but
coexisting individually. In the mixed reality state, the two
pendula exhibit highly correlated stable, phase-locked peri-
odic motion. In this mixed reality state of the system, the real
pendulum and the virtual pendulum move together as one.
These are illustrated in Fig. 2.

We model this coupled system by removing the real pen-
dulum entirely and replacing it with a routine in the code that
separately integrates

�̈sim + 2��̇sim + �0
2 sin �sim − arf̈r cos �sim = 0, �3�

an independent and equivalent equation of motion that rep-
resents the real pendulum. The ��� sign with the ar term is
necessary because the lever arm is mounted on a pivot that
effectively reverses the direction of the movement of the
actuator �see Fig. 1�b��. Since only the position of the real
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FIG. 1. Experimental apparatus. �a� shows a side view detail of
the pendulum housing: pendulum �A� is attached to slotted disk of
angular encoder �B� in housing �C�. �b� shows a top view of the
apparatus: pendulum �A� in housing �C� is attached to lever arm �D�
with pivot points �E�, driven by actuator �F�. The pendulum has a
length of l=15.37 cm and the adjustable distance 5.1�x�25 cm
from the pendulum to the pivot point controls the strength of the
dimensionless coupling constant 0.17�ar�0.67. As indicated, � is
the angular displacement of the real pendulum as measured from
the vertical.
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FIG. 2. Top: Position versus time for the experimental data point
�̄=0.98, ā��avar=0.19 �region I, mixed reality state�. This plot is
an example of the system exhibiting stable, phase-locked periodic
motion. Bottom: �̄=0.72 and ā=0.22 �region II, dual reality state�.
This is an example of the system ending in the stable equilibrium
position �=�=0. For both plots, the solid and dashed lines corre-
spond to � �the position of the real pendulum� and � �the position of
the virtual pendulum�, respectively.
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pendulum is measured in the experimental setup, the integra-
tion of Eq. �3� returns the position �sim. The velocity is cal-

culated using the position at the previous time step, and f̈ r is
evaluated analogously to Eq. �2�. The virtual pendulum rou-
tine independently integrates

�̈sim + 2��̇sim + ��̄�0�2 sin �sim + av f̈v cos �sim = 0 �4�

at each time step. The only difference between the experi-
mental system and the simulation system is that, instead of
measuring the position of the real pendulum, the simulation
integrates an equation of motion to calculate that position.
The feedback works exactly the same way as before, except
instead of an output voltage the program simply provides a
feedback amplitude coefficient to the modeled real pendu-
lum’s integrator at each time step. This simulation can also
run at real time, but suppressing the delay between integra-
tions returns precisely the same results in a fraction of the
time required. For both experiment and simulation, we vary
�̄ from 0.60 to 1.58, ar from 0.18 to 0.41, and av from 0.02
to 0.38 for a total of 2850 data points in this parameter space.

We now work with the reduced parameter space described
by �̄ and ā��avar, where ā is the geometric mean of the
forcing amplitudes. ā characterizes the strength of the bidi-
rectional coupling; necessarily ā→0 as av→0 or ar→0. For
weak coupling, we have 0� ā
0.4. �̄ characterizes the
quality of the model. For the virtual pendulum to be an ac-
curate model of the real pendulum, �̄ has to be near 1. We
find that there are two distinct regions in this parameter
space, corresponding to two qualitatively different limiting
behaviors of the system. These are depicted in Fig. 3. Region
I corresponds to the mixed reality state of the system. The

oscillations are about the fixed point of each pendulum, and
occur at frequencies close to the natural frequency of the real
pendulum �see the top plot in Fig. 2�. Region II corresponds
to the dual reality state of the system. In this region, both
pendula initially oscillate but the system is unable to sustain
this uncorrelated motion and loses kinetic energy until both
pendula are at rest �see the bottom plot in Fig. 2�. Region I
has the Arnold tongue structure for mode-locked solutions in
parameter space, as seen in Fig. 3. For each data set we wait
until t=25 s, which is long enough for the transient dynam-
ics to vanish; then we measure the maximum amplitude of
the real pendulum X�max��� over several oscillation cycles
for each pair of parameters �̄ and ā. We define X as the
maximum amplitude of the real pendulum in the experimen-
tal system and Xsim as the maximum displacement of the
simulated real pendulum. X and Xsim are plotted against �̄ for
ā=0.364 in Fig. 4. This curve shows the phase transitions
from region II to region I and then back to region II.

Dropping the sim subscripts, to linear order Eqs. �3� and
�4� become

�̈ + 2��̇ + �0
2� − ar�̈ = 0, �5�

�̈ + 2��̇ + �̄2�0
2� + av�̈ = 0. �6�

By taking successive derivatives of Eq. �5� and substituting
these into the second derivative of Eq. �6�, this system can be
written as the decoupled linear fourth-order differential equa-

tion �1+ ā2���4�+4���3�+ �4�2+2��̈+2�2�̇+ �̄2�0
4�=0.

��4�=��3�= �̈=0 at t=0 comprise the initial conditions, and
we define ��0

2�1+ �̄2�. The general solution to this system
is in the form ��t�=	i=1

4 cie
�it, where the ci are constants de-

termined from the initial conditions and the �i are the four
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FIG. 3. Limiting behavior phase transition diagram with Arnold
tongue structure for the two parameters ā and �̄. The squares, tri-
angles, and solid line indicate the critical points �̄c in the experi-
ment, simulation, and linear theory, respectively. These critical
points are the boundary between regions I and II in this parameter
space. Region I corresponds to stable, phase-locked oscillations of
the center of mass of each pendulum; this is the mixed reality state.
Region II corresponds to both pendula ending at the stable equilib-
rium position �=�=0; this is the dual reality state. In this figure,
there are 80 data points corresponding to �̄c for the experiment and
116 data points for the model, while the linear theory result is
plotted as a continuous line.
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FIG. 4. Response amplitudes X and Xsim versus �̄. The squares
with a dashed line show the experimental data, while the triangles
with a solid line show the numerical simulation data. These are
response curves for the system with ā=0.364. As indicated, for the
experiment, the interval in �̄ where X�0 corresponds to region I,
while the interval in �̄ where X=0 corresponds to region II. Like-
wise, for the simulation, the interval in �̄ where Xsim�0 corre-
sponds to region I, while the interval in �̄ where Xsim=0 corre-
sponds to region II �see Fig. 3�. In this figure, there are 99 data
points for both the experiment and the simulation.
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solutions of the characteristic equation �1+ ā2�r4+4�r3

+ �4�2+2�r2+2�2r+ �̄2�0
4=0. If, for all i, �i
0, then we

have ��t�→0 as t→�. However, even if for one eigenvalue
we have Re��i��0, then the solution is no longer bounded:
��t�→� as t→�. For a given ā, there are two values for �̄
such that Re��i�=0 for one eigenvalue. We define these to be
the critical points �̄c that mark the boundaries of the phase
diagram in Fig. 3. As shown in this figure, the phase diagram
of the linear system in Eqs. �5� and �6� closely matches that
of the full system in Eqs. �3� and �4�.

There are differences between the experimental and simu-
lation data. Region I in the simulation data extends further in
the direction of small ā than in the experimental data �Fig.
3�. Since the general shape of region I is very similar for
both sets of data, this onset of phase-locked oscillations for
smaller ā appears to reflect the greater efficiency of the simu-
lation. In the real system, there are inevitable small delays
and noise in the electronics and computer control, as well as
additional friction terms beyond the linear damping term in
Eq. �3�. As discussed above, more sophisticated models of
friction are necessary to reproduce pendulum dynamics ac-
curately. Nonetheless, the virtual pendulum in Eq. �1� suffi-
ciently models the real pendulum, giving rise to the mixed
reality state when �̄
1.

This work presents experimental data from an interreality
system comprising a virtual pendulum and its real-world
counterpart. There is bidirectional, instantaneous coupling
between the two pendula. We find that, if the dynamics of the
virtual system approximate those of the real one within a
small tolerance, there is a phase transition in the behavior of
the system. The interreality system makes a transition from a
dual reality state in which reality and virtual reality are un-
correlated to a mixed reality state in which reality and virtual
reality are highly correlated. For both the experimental data
and a numerical simulation, the region of mixed reality
mode-locked solutions in parameter space is an Arnold
tongue. While the appearance of an Arnold tongue is not

surprising, it highlights two features of this interreality sys-
tem that we would expect to be present in similar systems.
The shape of the Arnold tongue indicates that with stronger
coupling, the mixed reality states are accessible even with
increased mismatch between the frequencies of the pendula.
Also, the boundary of an Arnold tongue represents a discon-
tinuous or sudden change from a dual reality state to a mixed
reality state, as seen in Fig. 4. As virtual systems better ap-
proximate real ones, even weak coupling in other interreality
systems may produce sudden changes to mixed reality states.

Forced systems tend to have the greatest response when
the dynamics of the driving function match the dynamics of
the system �10�. This has been studied in depth for various
damped, coupled oscillator systems �11�. One application of
this phenomenon is resonance spectroscopy, where a system
with an unknown parameter b is driven with a forcing func-
tion that depends on this parameter. As b is varied, the sys-
tem has the largest response when the dynamics of the forc-
ing function match those of the system; thereby the value of
b is identified �12�. To date, work in this area has predomi-
nantly focused on numerical analysis of coupled differential
equations that represent the equations of motion for linear
and nonlinear oscillators �11,12�. There has been some ex-
perimental work on nonsinusoidal driving of nonlinear oscil-
lators �10�, but to the authors’ knowledge there has been no
work done on resonance spectroscopy via the instantaneous
coupling of a virtual system to its real counterpart. It may be
possible in this system or similar systems to use either the
peak of the response curve or the boundary of the Arnold
tongue to do system identification. Furthermore, it may be
possible to experimentally observe universal routes to syn-
chronization �13,14� using interreality systems. We plan to
examine these topics in the future.
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